Software Design “ State of the Union”
John Alabi, Kent Anderson, Vickie Chiang, Matthew Hill

Top Level State Diagram

Super Happy Funball Game Play

Determine playing
/ field orientation (A or

B
.—%Iash r \i}Drive to Dispenser \

Find Dispenser

Follow Tape

(Both on)

Turn Left Drive Forward

(Lefton & (Bothon) (Right on
(Both off, [ALALXCI)] & left off)

ide B)]
Turn Right Veer Right

Identify
beacons

Reach

C I dispenser
Expires

Request Balls Aim at Target
(Side A) (Side B)

(: Dispenser
SIS Push Button [SERS Turn Left Turn Right
EIapsed hit limit switch

Device Driver Level Modules
Beacon Detector Module for both Navigation & Aiming
e InitializeBeaconDetector — Returns nothing, takes nothing. Initializes all
necessary hardware and variables for the beacon detector.
e CheckBeaconOnStatus — Returns an unsigned character corresponding to
the current beacon detector state. The first two bits correspond to
o ALL OFF 0x00
0 RIGHT_ON 0x01
o LEFT_ON 0x02
o BOTH_ON 0x03
e CheckBeaconSeenStatus — Returns an unsigned character corresponding
to which, if any, beacon is seen.
NO_BEACONS
GOAL1
GOAL2
GOAL3
DISPENSER

OO0OO0OO0O0

AimingMotor Module
¢ InitializeAimingMotor — Returns nothing, takes nothing. Initializes
subsystem.
e AIM_TurnRight — takes an unsigned char speed and turns the aimer right
e AIM_TurnLeft — takes an unsigned char speed and turns the aimer left
e AIM_Stop — takes nothing, returns nothing

DriveMotor Module
¢ InitializeDriveMotor — Returns nothing, takes nothing. Initializes
subsystem.
e SetLeftPWM — takes a signed char DutyCycle and sets that duty cycle for
the right drive motor
e SetRightPWM — takes a signed char DutyCycle and sets that duty cycle
for the right drive motor

Timer Module
e InitializeTimerModule — initializes a timer at the start of the run that
increments with ms precision in a big-endian structure
e GetCurrentTime — Takes nothing, returns the current timer count as a long

TapeSensor Module
e InitializeTapeSensors — takes nothing, returns nothing, initializes sensors
e TSStatus — takes nothing, returns an unsigned char code corresponding to
which sensors are active. Example of use:
iIT(TS_LEFT_ON & TSStatus())
o TS_CENTER bit 2 hi/lo
o TS_LEFT bit O hi/lo
o TS_RIGHT bit 1 hi/lo

Higher Level Modules
Aiming Module
e InitAiming — takes nothing, initializes: turret motor, limit switches, tape
measure motor
e CheckAimEvents — returns a code corresponding to an event and runs the
event checker for the tape measure

o L_LIMIT Detected rising edge on left limit switch
o R_LIMIT Detected rising edge on right limit switch
0 NO_EVENT nothing happened

HandleAimEvent

Mode: Hold Left Hold Right | Turn Left Turn Rght | Hold
L_LIMIT OK, very Turn left, Start Hold | Turn right | Nothing
low duty very low
cycle duty cycle
R_LIMIT Turn left OK Turn left Start Hold | Nothing
NO_EVENT Turn left Turnright | Turn left Turn Nothing
Right

*EXTEND and retract maintain the hold command and revert to holding when the
action is done.

SetAimMode
Disabled during EXTEND/RETRACT
e TURN_RIGHT
TURN_LEFT
HOLD_RIGHT
HOLD_LEFT
HOLD
EXTEND - only if holding, reverts to whatever hold it was doing at the
time it was initialized. SetMode is disabled here
e RETRACT - only if holding SetMode is disabled here

GetAimMode
Tape Measure Module
CheckTMEvents —
e MARK DETECTED
e NO_EVENT
HandleTMEvent — handles events from CheckTM Events
Mode: Hold Extended Retracted
MARK Nothing Stop/Hold if t>tmin | Stop/Hold if t>tmin

NO_EVENT Nothing Nothing Nothing

SetTMMode - sets the tape measure mode to one of the following modes. Note
that the modes EXTENDED and RETRACTED should not be permitted to be set
external to the module

e EXTENDED

e RETRACTED

e HOLD

GetTMMode — returns the current tape measure mode.

Old Aiming Module — superseded by new version

BeaconNavigating Module
e CheckBNEvents — returns a code corresponding to events that may have

happened
o TRGT_LEFT Target is to left of current heading
0 TRGT_RIGHT Target is to right of current heading
0 TRGT_LOCK Both Detectors register, heading OK
0 TRGT_LOST Target is not visible
o GOAL1 Sees Goal 1, which is not target
o GOAL2 Sees Goal 2, which is not target
o GOAL3 Sees Goal 3, which is not target

o0 DISPENSER Sees Dispenser, which is not target
e HandleBNEvents — takes event code, responds according to mode
e BN_Mode

o GOAL1 Goal 1 is your target

o GOAL2 Goal 2 is your target

o GOAL3 Goal 3 is your target

0 DISPENSER Dispenser is your target
o SHUTDOWN

Driving Module

VeerRight — Takes uchar speed. Initiates a right pivot about the left wheel.
VeerLeft — Takes uchar speed. Initiates a right pivot about the left wheel.
TurnRight — Takes uchar speed. Turn left in place

TurnLeft — Takes uchar speed. Turn left in place

Forward - Takes uchar speed. Go straight forward

Reverse - Takes uchar speed. Go straight back

Stop — takes nothing, returns nothing, stop all drive motors.

LineFollowing Module
e CheckLFEvents — returns a code corresponding to events that may have
happened
o LEFT_ON
RIGHT_ON
CENTER_ON
FRONT_ON
ALL_ON
o ALL_OFF
e HandleLFEvent — handles the line following event according to the current
operating mode
e LF_SetMode — Takes a code corresponding to a mode for line following
that determines how the event handler responds
TURN_RIGHT
TURN_LEFT
FOLLOW
SEEK_LINE
SHUTDOWN

O 00O

O O0O0O0O0

BallRequest Module
e InitializeBR — Returns nothing, takes nothing. Initializes all necessary
hardware/variables for the ball requesting functionality
e CheckBREvents — returns a code corresponding to different events

o BR_READY Ready for a new request
0 BR_PENDING Request is pending (1 s between requests
o]

¢ HandleBREvents — handles event codes
e BR_SetMode — Sets the BR mode. Modes include

o SINGLE_BALL Request a single ball, resets itself in handler
o SHUTDOWN Don’t Do anything

0 MAX_BALLS Request as many as you can, ASAP

o MED_BALLS Request continuously at a slower clip

HowManyBRMade — returns how many ball requests have been made
Static RequestBall — Returns unsigned character NumberofBalls that
tracks the number of balls, including the current ball, that have been
requested. It initiates the requesting of a ball.
Static IsRequestFinished()— continually call this from your event checker
after RequestBall. Returns TRUE if done, FALSE if not.
Static ButtonReady() — Returns TRUE if the conditions are met for
requesting a new ball from the dispenser. Based on timer count and
history of requested balls.
Example implementation for max-speed ball requesting
while(TRUE)
iT(PendingBal IRequest == FALSE) {
if(ButtonReady()) {
RequestBall();
PendingBal IRequest = TRUE;
by
} else {
1T (IsRequestFinished()) {
PendingBal IRequest = FALSE;
}

}
}

