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Device Driver Level Modules 
Beacon Detector Module for both Navigation & Aiming 

• InitializeBeaconDetector – Returns nothing, takes nothing.  Initializes all 
necessary hardware and variables for the beacon detector. 

• CheckBeaconOnStatus – Returns an unsigned character corresponding to 
the current beacon detector state.  The first two bits correspond to  

o ALL_OFF  0x00 
o RIGHT_ON 0x01 
o LEFT_ON 0x02 
o BOTH_ON 0x03 

• CheckBeaconSeenStatus – Returns an unsigned character corresponding 
to which, if any, beacon is seen. 

o NO_BEACONS 
o GOAL1 
o GOAL2 
o GOAL3 
o DISPENSER 

 
AimingMotor Module 

• InitializeAimingMotor – Returns nothing, takes nothing.  Initializes 
subsystem. 

• AIM_TurnRight – takes an unsigned char speed and turns the aimer right 
• AIM_TurnLeft – takes an unsigned char speed and turns the aimer left 
• AIM_Stop – takes nothing, returns nothing 

 
DriveMotor Module 

• InitializeDriveMotor – Returns nothing, takes nothing.  Initializes 
subsystem. 

• SetLeftPWM – takes a signed char DutyCycle and sets that duty cycle for 
the right drive motor 

• SetRightPWM – takes a signed char DutyCycle and sets that duty cycle 
for the right drive motor 

 
Timer Module 

• InitializeTimerModule – initializes a timer at the start of the run that 
increments with ms precision in a big-endian structure 

• GetCurrentTime – Takes nothing, returns the current timer count as a long  
 
TapeSensor Module 

• InitializeTapeSensors – takes nothing, returns nothing, initializes sensors 
• TSStatus – takes nothing, returns an unsigned char code corresponding to 

which sensors are active.  Example of use:  
if(TS_LEFT_ON & TSStatus()) 

o TS_CENTER  bit 2 hi/lo 
o TS_LEFT  bit 0 hi/lo 
o TS_RIGHT  bit 1 hi/lo 



Higher Level Modules 
Aiming Module 

• InitAiming – takes nothing, initializes: turret motor, limit switches, tape 
measure motor 

• CheckAimEvents – returns a code corresponding to an event and runs the 
event checker for the tape measure 

o L_LIMIT  Detected rising edge on left limit switch 
o R_LIMIT  Detected rising edge on right limit switch 
o NO_EVENT  nothing happened 

 
 
HandleAimEvent 
Mode: Hold Left Hold Right Turn Left Turn Rght Hold 
L_LIMIT OK, very 

low duty 
cycle 

Turn left, 
very low 
duty cycle 

Start Hold Turn right Nothing 

R_LIMIT Turn left OK Turn left Start Hold Nothing 
NO_EVENT Turn left Turn right Turn left Turn 

Right 
Nothing 

*EXTEND and retract maintain the hold command and revert to holding when the 
action is done.  
 
SetAimMode 
Disabled during EXTEND/RETRACT 

• TURN_RIGHT 
• TURN_LEFT 
• HOLD_RIGHT 
• HOLD_LEFT 
• HOLD 
• EXTEND – only if holding, reverts to whatever hold it was doing at the 

time it was initialized.  SetMode is disabled here 
• RETRACT – only if holding SetMode is disabled here 

 
GetAimMode 
 
Tape Measure Module 
CheckTMEvents –  

• MARK_DETECTED 
• NO_EVENT 

 
HandleTMEvent – handles events from CheckTM Events 
Mode: Hold Extended Retracted 
MARK Nothing Stop/Hold if t>tmin Stop/Hold if t>tmin
NO_EVENT Nothing Nothing Nothing 
 



SetTMMode – sets the tape measure mode to one of the following modes.  Note 
that the modes EXTENDED and RETRACTED should not be permitted to be set 
external to the module 

• EXTENDED 
• RETRACTED 
• HOLD 

 
GetTMMode – returns the current tape measure mode. 
 
 
Old Aiming Module – superseded by new version 

• InitializingAim – takes nothing, returns nothing, initializes subsystem 
• CheckAimEvents – returns a code corresponding to events that may have 

happened 
o BCN_GOAL1{ _L, _R, _B }  Sees goal 1 on Left, Right, Both 
o BCN_GOAL2{ _L, _R, _B }  Sees goal 2 on Left, Right, Both 
o BCN_GOAL3{ _L, _R, _B }  Sees goal 3 on Left, Right, Both 
o DISP_BEACON   Sees dispenser  ERROR 
o L_LIMIT    Hit left limit switch 
o R_LIMIT     Hit right limit switch 
o EXTENDED    Deploy Secret Weapon #1 
o RETRACTED   Un-deploy Secret Weapon #1 
o NO_EVENT    Boring! 

• HandleAimEvent – responds to the code from CheckAimingEvents() 
• Aim_SetMode – takes a code corresponding to which beacon to look for, 

returns nothing 
o DISPENSER 
o GOAL1 
o GOAL2 
o GOAL3 
o EXTENDING 
o RETRACTING 
o SHUTDOWN 

• IsAimed – Takes nothing, returns TRUE if the aiming subsystem is aiming 
at the target, FALSE if not. 

 
BeaconNavigating Module 

• CheckBNEvents – returns a code corresponding to events that may have 
happened 

o TRGT_LEFT  Target is to left of current heading 
o TRGT_RIGHT Target is to right of current heading 
o TRGT_LOCK Both Detectors register, heading OK 
o TRGT_LOST  Target is not visible 
o GOAL1   Sees Goal 1, which is not target 
o GOAL2   Sees Goal 2, which is not target 
o GOAL3   Sees Goal 3, which is not target 



o DISPENSER  Sees Dispenser, which is not target 
• HandleBNEvents – takes event code, responds according to mode 
• BN_Mode 

o GOAL1  Goal 1 is your target 
o GOAL2  Goal 2 is your target 
o GOAL3  Goal 3 is your target 
o DISPENSER  Dispenser is your target 
o SHUTDOWN  

 
Driving Module 

• VeerRight – Takes uchar speed. Initiates a right pivot about the left wheel. 
• VeerLeft – Takes uchar speed. Initiates a right pivot about the left wheel. 
• TurnRight – Takes uchar speed. Turn left in place 
• TurnLeft – Takes uchar speed. Turn left in place 
• Forward - Takes uchar speed. Go straight forward  
• Reverse - Takes uchar speed. Go straight back  
• Stop – takes nothing, returns nothing, stop all drive motors. 

 
LineFollowing Module 

• CheckLFEvents – returns a code corresponding to events that may have 
happened 

o LEFT_ON 
o RIGHT_ON 
o CENTER_ON 
o FRONT_ON 
o ALL_ON 
o ALL_OFF 

• HandleLFEvent – handles the line following event according to the current 
operating mode 

• LF_SetMode – Takes a code corresponding to a mode for line following 
that determines how the event handler responds 

o TURN_RIGHT 
o TURN_LEFT 
o FOLLOW 
o SEEK_LINE 
o SHUTDOWN 

 
BallRequest Module 

• InitializeBR – Returns nothing, takes nothing.  Initializes all necessary 
hardware/variables for the ball requesting functionality 

• CheckBREvents – returns a code corresponding to different events 
o BR_READY  Ready for a new request 
o BR_PENDING Request is pending (1 s between requests 
o  

• HandleBREvents – handles event codes 
• BR_SetMode – Sets the BR mode.  Modes include 



o SINGLE_BALL Request a single ball, resets itself in handler 
o SHUTDOWN  Don’t Do anything 
o MAX_BALLS  Request as many as you can, ASAP 
o MED_BALLS  Request continuously at a slower clip 

• HowManyBRMade – returns how many ball requests have been made 
• Static RequestBall – Returns unsigned character NumberofBalls that 

tracks the number of balls, including the current ball, that have been 
requested.  It initiates the requesting of a ball. 

• Static IsRequestFinished()– continually call this from your event checker 
after RequestBall.  Returns TRUE if done, FALSE if not.   

• Static ButtonReady() – Returns TRUE if the conditions are met for 
requesting a new ball from the dispenser.  Based on timer count and 
history of requested balls. 

• Example implementation for max-speed ball requesting 
while(TRUE) 
   if(PendingBallRequest == FALSE) { 
      if(ButtonReady())  { 
         RequestBall(); 
         PendingBallRequest = TRUE; 
      } 
   } else { 
      if (IsRequestFinished()) { 
         PendingBallRequest = FALSE; 
      } 
   } 
} 

 


