
Software Design “State of the Union”
John Alabi, Kent Anderson, Vickie Chiang, Matthew Hill

Top Level State Diagram

Super Happy Funball Game Play

Find Dispenser

Drive to Dispenser

Turn Left

Detect flash

Detect
50%
beacon

Identify
beacons

Drive
Forward Follow Tape Sense

tape

Drive Forward

Veer Right Veer Left

(Left on &
right off)

(Right on
& left off)

(Both on)

Turn Left

Determine playing
field orientation (A or
B)

Turn Right

(Both off,
side A)

(Both off,
side B)

(Both on)
H

Start Scoring

Request Balls Aim at Target

Reach
dispenser

(Both on)

Push Button 1 sec
elapsed

Turn Left Turn Right

(Side A) (Side B)

Stop
(hit limit switch)

2 min
Expires

Dispenser
Empty

Device Driver Level Modules
Beacon Detector Module for both Navigation & Aiming

• InitializeBeaconDetector – Returns nothing, takes nothing. Initializes all
necessary hardware and variables for the beacon detector.

• CheckBeaconOnStatus – Returns an unsigned character corresponding to
the current beacon detector state. The first two bits correspond to

o ALL_OFF 0x00
o RIGHT_ON 0x01
o LEFT_ON 0x02
o BOTH_ON 0x03

• CheckBeaconSeenStatus – Returns an unsigned character corresponding
to which, if any, beacon is seen.

o NO_BEACONS
o GOAL1
o GOAL2
o GOAL3
o DISPENSER

AimingMotor Module

• InitializeAimingMotor – Returns nothing, takes nothing. Initializes
subsystem.

• AIM_TurnRight – takes an unsigned char speed and turns the aimer right
• AIM_TurnLeft – takes an unsigned char speed and turns the aimer left
• AIM_Stop – takes nothing, returns nothing

DriveMotor Module

• InitializeDriveMotor – Returns nothing, takes nothing. Initializes
subsystem.

• SetLeftPWM – takes a signed char DutyCycle and sets that duty cycle for
the right drive motor

• SetRightPWM – takes a signed char DutyCycle and sets that duty cycle
for the right drive motor

Timer Module

• InitializeTimerModule – initializes a timer at the start of the run that
increments with ms precision in a big-endian structure

• GetCurrentTime – Takes nothing, returns the current timer count as a long

TapeSensor Module

• InitializeTapeSensors – takes nothing, returns nothing, initializes sensors
• TSStatus – takes nothing, returns an unsigned char code corresponding to

which sensors are active. Example of use:
if(TS_LEFT_ON & TSStatus())

o TS_CENTER bit 2 hi/lo
o TS_LEFT bit 0 hi/lo
o TS_RIGHT bit 1 hi/lo

Higher Level Modules
Aiming Module

• InitAiming – takes nothing, initializes: turret motor, limit switches, tape
measure motor

• CheckAimEvents – returns a code corresponding to an event and runs the
event checker for the tape measure

o L_LIMIT Detected rising edge on left limit switch
o R_LIMIT Detected rising edge on right limit switch
o NO_EVENT nothing happened

HandleAimEvent
Mode: Hold Left Hold Right Turn Left Turn Rght Hold
L_LIMIT OK, very

low duty
cycle

Turn left,
very low
duty cycle

Start Hold Turn right Nothing

R_LIMIT Turn left OK Turn left Start Hold Nothing
NO_EVENT Turn left Turn right Turn left Turn

Right
Nothing

*EXTEND and retract maintain the hold command and revert to holding when the
action is done.

SetAimMode
Disabled during EXTEND/RETRACT

• TURN_RIGHT
• TURN_LEFT
• HOLD_RIGHT
• HOLD_LEFT
• HOLD
• EXTEND – only if holding, reverts to whatever hold it was doing at the

time it was initialized. SetMode is disabled here
• RETRACT – only if holding SetMode is disabled here

GetAimMode

Tape Measure Module
CheckTMEvents –

• MARK_DETECTED
• NO_EVENT

HandleTMEvent – handles events from CheckTM Events
Mode: Hold Extended Retracted
MARK Nothing Stop/Hold if t>tmin Stop/Hold if t>tmin
NO_EVENT Nothing Nothing Nothing

SetTMMode – sets the tape measure mode to one of the following modes. Note
that the modes EXTENDED and RETRACTED should not be permitted to be set
external to the module

• EXTENDED
• RETRACTED
• HOLD

GetTMMode – returns the current tape measure mode.

Old Aiming Module – superseded by new version

• InitializingAim – takes nothing, returns nothing, initializes subsystem
• CheckAimEvents – returns a code corresponding to events that may have

happened
o BCN_GOAL1{ _L, _R, _B } Sees goal 1 on Left, Right, Both
o BCN_GOAL2{ _L, _R, _B } Sees goal 2 on Left, Right, Both
o BCN_GOAL3{ _L, _R, _B } Sees goal 3 on Left, Right, Both
o DISP_BEACON Sees dispenser ERROR
o L_LIMIT Hit left limit switch
o R_LIMIT Hit right limit switch
o EXTENDED Deploy Secret Weapon #1
o RETRACTED Un-deploy Secret Weapon #1
o NO_EVENT Boring!

• HandleAimEvent – responds to the code from CheckAimingEvents()
• Aim_SetMode – takes a code corresponding to which beacon to look for,

returns nothing
o DISPENSER
o GOAL1
o GOAL2
o GOAL3
o EXTENDING
o RETRACTING
o SHUTDOWN

• IsAimed – Takes nothing, returns TRUE if the aiming subsystem is aiming
at the target, FALSE if not.

BeaconNavigating Module

• CheckBNEvents – returns a code corresponding to events that may have
happened

o TRGT_LEFT Target is to left of current heading
o TRGT_RIGHT Target is to right of current heading
o TRGT_LOCK Both Detectors register, heading OK
o TRGT_LOST Target is not visible
o GOAL1 Sees Goal 1, which is not target
o GOAL2 Sees Goal 2, which is not target
o GOAL3 Sees Goal 3, which is not target

o DISPENSER Sees Dispenser, which is not target
• HandleBNEvents – takes event code, responds according to mode
• BN_Mode

o GOAL1 Goal 1 is your target
o GOAL2 Goal 2 is your target
o GOAL3 Goal 3 is your target
o DISPENSER Dispenser is your target
o SHUTDOWN

Driving Module

• VeerRight – Takes uchar speed. Initiates a right pivot about the left wheel.
• VeerLeft – Takes uchar speed. Initiates a right pivot about the left wheel.
• TurnRight – Takes uchar speed. Turn left in place
• TurnLeft – Takes uchar speed. Turn left in place
• Forward - Takes uchar speed. Go straight forward
• Reverse - Takes uchar speed. Go straight back
• Stop – takes nothing, returns nothing, stop all drive motors.

LineFollowing Module

• CheckLFEvents – returns a code corresponding to events that may have
happened

o LEFT_ON
o RIGHT_ON
o CENTER_ON
o FRONT_ON
o ALL_ON
o ALL_OFF

• HandleLFEvent – handles the line following event according to the current
operating mode

• LF_SetMode – Takes a code corresponding to a mode for line following
that determines how the event handler responds

o TURN_RIGHT
o TURN_LEFT
o FOLLOW
o SEEK_LINE
o SHUTDOWN

BallRequest Module

• InitializeBR – Returns nothing, takes nothing. Initializes all necessary
hardware/variables for the ball requesting functionality

• CheckBREvents – returns a code corresponding to different events
o BR_READY Ready for a new request
o BR_PENDING Request is pending (1 s between requests
o

• HandleBREvents – handles event codes
• BR_SetMode – Sets the BR mode. Modes include

o SINGLE_BALL Request a single ball, resets itself in handler
o SHUTDOWN Don’t Do anything
o MAX_BALLS Request as many as you can, ASAP
o MED_BALLS Request continuously at a slower clip

• HowManyBRMade – returns how many ball requests have been made
• Static RequestBall – Returns unsigned character NumberofBalls that

tracks the number of balls, including the current ball, that have been
requested. It initiates the requesting of a ball.

• Static IsRequestFinished()– continually call this from your event checker
after RequestBall. Returns TRUE if done, FALSE if not.

• Static ButtonReady() – Returns TRUE if the conditions are met for
requesting a new ball from the dispenser. Based on timer count and
history of requested balls.

• Example implementation for max-speed ball requesting
while(TRUE)
 if(PendingBallRequest == FALSE) {
 if(ButtonReady()) {
 RequestBall();
 PendingBallRequest = TRUE;
 }
 } else {
 if (IsRequestFinished()) {
 PendingBallRequest = FALSE;
 }
 }
}

